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Asymptotic Description of a Viscous Fluid Layer
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We prove that the exact non local equation derived by the present authors for
the temporal linear evolution of the surface of a viscous incompressible fluid
reduces asymptotically for high viscosity to a second order Mathieu type equa-
tion proposed recently by Cerda and Tirapegui. The equation describes a
strongly damped pendulum and the conditions of validity of the asymptotic
regime are given in terms of the relevant physical parameters.
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When a layer of fluid of height h on an horizontal plate is vibrated verti-
cally stationary waves appear in the free surface above some amplitude
threshold (Faraday's instability). Let x� =(x, y) be horizontal coodinates,
z the vertical axis and we choose the origin in the free surface when the
system is at rest (the plate is at z=&h). We call !(x� , t) the vertical dis-
placement of the free surface and !k9 (t) its horizontal Fourier transform (we
consider the system as infinitely extended in the horizontal directions). For
an inviscid fluid Benjamin and Ursell(1) derived in the linear approximation
a Mathieu equation for !k9 (t) of the form (dots represent derivatives with
respect to time)

!� k9 (t)+|2
k !k9 (t)=0 (1)

where |2
k=k tanh(kh)(g+{k2�\) is the usual dispersion relation for surface

waves (g is gravity, { the surface tension and \ the density). Equation (1)
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corresponds to an undamped pendulum and weak viscosity has been intro-
duced phenomenologically adding a dissipative term to the Benjamin�
Ursell (BU) Eq. (1). In these last years the case of strong viscosity has
interested many authors. Numerical studies of the Navier�Stokes equations
have been done(2, 3) and compared with experiments. However no simple
equation playing here the role of the corrected BU equation had been
proposed. Recently Cerda and Tirapegui (CT) derived such an equation(4�6)

for realistic boundary conditions. The CT equation is again a Mathieu type
equation which corresponds to a strongly damped pendulum with coefficients
which differ from the BU equation valid for weak viscosity. The Cerda�
Tirapegui equation describes asymptotically for strong viscosity the linear
evolution of the free surface of the fluid and our purpose here is to give a
formal proof of the validity of this asymptotic description.

We shall first summarize the derivation of the CT equation for !k9 (t)
when the fluid is at rest and then we show how to add the effect of the
vibration of the plate (all details can be found in our previous work(5, 6)).
The starting point is the derivation of an exact equation for !k9 (t) which is
non local in time due to memory effects. We begin the Navier�Stokes equa-
tion for the velocity v� (x� , z, t)=(v1 , v2 , v3) with the correct boundary con-
ditions for a viscous fluid. We insist in this point since a non local equation
for !k9 (t) has been derived recently(9) but imposing unphysical boundary
conditions in the bottom of the plate which restricts the validity of the
equation to the case of deep water. We impose in the upper surface the
usual kinematical conditions relating v� with !(x� , t) and the equality of
forces

:
3

l=1

Tjlnl=( po+{(1�R1+1�R2)) nj , j=1, 2, 3

where po is the atmospheric pressure, (R1 , R2) the radius of curvature in
the two horizontal directions, n̂=(n1 , n2 , n3) the unitary normal to the
surface and Tjl the stress tensor there. It has the form T jl= p $jl&\&(�j vl&
�l vj ) where & is the viscosity and p the pressure. On the plate we impose
the no-slip boundary conditions v� (x� , z=&h, t)=0. We write v� =&{9 ,+u�
and call u� (x� , z, t)=(u1 , u2 , u3) the diffusive velocity since it will contain the
boundary effects depending on the viscosity which can not be realized by
a potential term. After linearizing around the static solution (v� =0, pst=
po&\gz) of the Navier�Stokes equation we prove that linearly one has

(�t+2&k2)2 !k9 (t)+|2
k !k9 (t)

+
(�t+2&k2)

cosh kh
u3k9 (z, t) | z=&h+2&k tanh kh �zu3k9 (z, t) | z=0=0 (2)
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This exact equation relates !k9 (t) to the horizontal Fourier transform
u3k9 (z, t) of the vertical component u3(x� , z, t) of the diffusive velocity. The
function u3k9 satisfies the equation

[�t&&(�2
z&k2)] u3k9 (z, t)=0 (3)

with the boundary conditions

u3k9 (z, t) | z=0= &2&k2!k9 (t) (4)

[sinh kh u3k9 (z, t)+k cosh kh u3k9 (z, t)] | z=0= &k(�t+2&k2) !k9 (t)

Equation (2) will become our exact equation for !k9 (t) when u3k9 (z, t)
is expressed as a functional of !k9 (t) solving Eqs. (3) and (4). The physical
interpretation of (2) is clear: the effects of the,two boundaries correspond
to the two last terms in (2) and the other additional term with respect to
the non dissipative BU equation (1) is the translation �t � �t+2&k2 of the
time derivative which we can identify with the effect of dissipation by fric-
tion in the region of potential motion of the fluid.(5) Since we are interested
in the long time behavior we solve Eq. (3) taking initial conditions at time
to � &� and we obtain

u3k9 (t)=|
�

&�
dt$ exp[&&k2(t&t$)] K(t&t$, z) !k9 (t$) (5)

where the kernel K(t, z) can be calculated exactly(5, 6) and the non local
character in time due to the memory effects of the autonomous equation
for !k9 (t) obtained replacing (5) in (2) is now explicit. We can write this
exact non local equation formally as an infinite series in the time
derivatives � (n)

t =�n��tn, n�1. The result is

:
n�1

c~ n � (n)
t !k9 (t)+|2

k!k9 (t)=0 (6)

where the coefficients c~ n will be specified below. If the plate is vibrated verti-
cally its coordinate zp is zp(t)=&h+A.(u=0t), where .(u) has period 2?,
max |.(u)|=O(1). The effective gravity ge(t) in the reference system in
which the plate is at rest is (points represent derivatives with respect to time)

ge(t)= g+z� p(t)= g(1+1/(0t)) (7)
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where /(u)=."(u) (primes are derivatives with respect to u) and 1=
A02�g. The equation for this situation is obtained from (2) or (6) replacing
g by ge(t) in the expression of |2

k . This changes |2
k to |k(t)2 given by

|k(t)2=|2
k(1+1k/(0t)), 1k=

1
1+{k2�\g

(8)

The coefficients c~ n in (6) are (v#kh)

c~ n=
(&1)n

(&k2)n&2 cn(v), n�1 (9)

cn(v)= :
p�1

ap(v)
up(v)n&1 , n�3 (10)

c2(v)=1+ :
p�1

ap(v)
up(v)

#F(v)�
3
2

(11)

c1(v)#&2G(v) (12)

Here F(v) is of order O(1) for all v while G(v)r1 for v-1,
G(v)r3�2v2 for v<<1, ap(v) are bounded dimensionless positive functions
of v and ( p�1)

up(v)=1+
:p(v)

v2 , p2?2<:p(v)<((2p+1)�2)2 ?2 (13)

where :p(v) are functions of v. The explicit expressions of all the preceding
functions can be found in refs. 5 and 6. Putting !k=exp(st) in (6) the
values of s are determined by the dispersion relation (see also refs. 2 and 7)
DR(s)=F� (s)+|2

k where

F� (s)=(s+2&k2)2+&2k
q2+k2

cosh v
4qk sinh v&(q2+k2) sinh(qh)

k sinh(qh) cosh v&q sinh v cosh(qh)

+4&2k3 tanh v
q sinh(qh) sinh v&k cosh(qh) cosh v
k sinh(qh) cosh v&q sinh v cosh(qh)

(14)

with q#- s�&+k2. In mathematical terms we have in (6) a pseudodifferen-
tial operator and its symbol is the funtion DR(s)(8) and we remark that
properties (9)�(13) are direct consequences of a Mittag�Loefler expan-
sion(5, 6) of F� . We consider now Eq. (6) with forcing (|2

k is replaced by
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|k(t)2 given by (8)): putting u=0t, �t=0�u , and multiplying by (&k2)&2

we can write (6) in the dimensionless form

:
n�1

(&')n cn(v) � (n)
u !k(u)+co(u, v) !k(u)=0 (15)

co(u, v)=
|k(t)2

(&k2)2=
tanh v(1+;v2)

:v3 (1+1k /(u)) (16)

=#
0h2

&
, :#

&2

gh3 , ;#
{

\gh2 , '#
=
v2 (17)

In the previous equations the dependence on the dimensionless param-
eters (=, :, ;, v, 1 ) is explicitly exihibited. The Cerda�Tirapegui equation is
obtained from (15) keeping only the first three terms, i.e., up to N=2 in
the sum. In what follows we shall derive the mathematical conditions which
allow the use of the troncated equation near the instabilities. If we put
p=&'�u Eq. (15) can be written

H(u, p=&'�u) !k(u)=0

with

H(u, p)= :
n�1

cn(v) pn+co(u, v) (18)

Our interest is in the asymptotic behavior for '<<1. We make the
WKB type ansatz

!k=e&1�' ,(u, ')

(19)
,(u, ')=,(0)(u)+',(1)(u)+'2,(2)(u)+ } } }

Replacing in (15) we obtain a hierarchy of equations for [,( j)(u)]. The
leading behavior is given by the functions ,(0)(u) and ,(1)(u) which satisfy
the equations

H(u, �u,(0)(u))=0 (20)

\�H(u, p)
�p }p=�u,(o) + �u ,(1)=

1
2 \

�2H(u, p)
�p2 } p=�u,(0)+ � (2)

u ,(0) (21)
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The coefficients cn(v) in H(u, p) are given by (10)�(12) and since
u1(v)<u2(v)< } } } <uj (v)< } } } one has (+#u1(v)&1)

cn(v)�+n&2 :
p�1

ap(v)
up(v)

, n�3 (22)

Due to (13) u1(v)>1+(:min
1 �v2), and then +<1�(1+(:min

1 �v2))<1 for
v�1. Notice that + increases if v increases but one always has +<1. We
shall consider now + as an small expansion parameter and we see then that
we can expect the leading term to be a good quantitative approximation
for v�1 while for big v we can expect at least qualitative agreement with
the complete non local equation (15). Using (22) we can write

cn(v)=+n&2bn(v), n�3 (23)

with 0<bn(v)<1�2 due to (22) and (11). Expanding ,( j)(u), j�1, in the
form

,( j)(u)=, ( j)
0 (u)++, ( j)

1 (u)++2, ( j)
2 (u)+ } } } (24)

and replacing in formulas (20), (21) we obtain for the leading terms
(, (0)

0 (u), , (1)
0 (u)) the equations

c2(�u , (0)
0 )2+c1(�u, (0)

0 )+c0(u, v)=0 (25)

(c1+2c2 �u, (0)
0 ) �u, (1)

0 = 1
2c2 � (2)

u , (0)
0 (26)

The solution of (15) in this double asymptotics (' and + small) is then

!k9 =exp _&
1
'

(, (0)
0 (u)+', (1)

0 (u))& (27)

We recall now that the Cerda�Tirapegui equation is obtained troncating
Eqs. (6) or (15) at n=2. From (15) one gets the CT equation

'2c2(v) � (2)
u !k9 +'c1(v) �u!k9 +c0(u, v) !k9 =0 (28)

We make for (28) a WKB ansatz writing

!k9 =exp _&
1
'

(�(0)(u)+'�(1)(u)+ } } } )& (29)
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and replacing in (28) we find immediately that the functions �(0)(u) and
�(1)(u) satisfy Eqs. (25) and (26) thus showing that the CT equation gives
the correct asymptotic behavior of the complete non local equation (6)
when ' and + are small quantities (we recall that + is always smaller than
1 and approaches this value only in the limit v � �). This ends then our
discussion of the conditions of validity of CT equation.

We go now to a second part of this paper in which we shall discuss
how the previous conditions of validity can be expressed in terms of physi-
cal parameters. The CT equation is

!� k9 (t)+2#� k!4 k9 (t)+|� 2
k(1+1k /(0)) !k9 (t)=0 (30)

#� k=
&k2G(kh)
2F(kh)

, |� k=
|2

k

F(kh)
, 1k=

1
1+{k2�\g

=
1

1+;v2 (31)

If we write (30) with the same parameters (=, :, ;, v, 1 ) appearing in
Eq. (15) we have

� (2)
u !k9 +

v2G(v)
=F

�u !k9 +
v(1+;v2) tanh v

:=2F(v) \1+
1

1+;v2 /(u)+ !k9 =0 (32)

Our strategy will be to study the CT equation (from now on we shall
always speak of the CT equation) and to determine the parameters (=, :, ;)
defined in (17) for which the instability arises and the threshold value 1c

of the control parameter and the critical wave number kc . Once kc is
known we know vc=kch and we can determine '==�v2

c and check the two
conditions for the validity of (30), i.e., '==�v2

c<<1, +=(1+:1(vc)�v2
c)&1

<<1, with ?2<:1(vc)< 9
4?2. If '�1, and since + is strictly smaller than

one for all finite vc , we can expect at least qualitative validity of the CT
equation for the purpose of the determination of the instability threshold.
We consider first the equation for a damped pendulum written in the form

!� (t)+2#!4 (t)+|2(1+1 (o)/(0t)) !(t)=0 (33)

We can obtain exact results in the study of (33) if we take for /(u)
a step function of period 2? defined by /(u)=1, &?�2�u<?�2; /(u)=&1,
?�2�u<3?�2, and we can certainly expect that the scenario obtained by
this special choice of /(u) will be the general one. We put #̂##�|, _#|�0
and notice that in the analysis of the behavior of Eq. (33) it is useful to
distinguish two cases:

(a) 1 (o)>|1& #̂2| which is related to strong damping (strong
viscosity in the Faraday problem) since 1 (o)>1 for #̂=0;
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(b) 1 (o)<|1&#̂2| in which case one can show that when #̂ goes to
zero the threshold value of 1 (o) also vanishes as it must for weak damping.
We focus in 1 (o)>|1&#̂2|. The relevant quantity in the analysis is (_~ #
_ - 1 (o)&1+ #̂2, k� #_ - 1 (o)+1&#̂2)

X=cosh(?_~ ) cos(?k� )+
_~ 2+k� 2

2_~ k�
sinh(?_~ ) sin(?k� ) (34)

where (_~ , k� ) are real quantities since 1 (o)>|1&#̂2|. The Floquet analysis of
(33) tells us that the condition for instability is |X |�cosh(2?_#̂). We con-
sider the ``resonant curves'' C� (n) defined by k� =n which will be represented
in the (1 (o), _) plane by the equations (n=1, 2, 3,...)

1 (o)=
n2

_2&1+ #̂2# f� n(_) (35)

On the curve C� (n) we have X=(&1)n cosh(?_~ ) and the condition for
instability |X |�cosh(2?_#̂) tells us that in each resonant curve we must
have

1 (o)�1+3#̂2# f� (_) (36)

in order to be unstable and since f� (_) does not depend on _ the marginal
curve C� given by 1 (o)=1+3#̂2 is a line parallel to the _ axis in the
(1 (o), _) plane. Since X changes sign between the curves C� n and C� n+1 there
must be a curve in between for which X=0. This tells us that we will have
disjoint tongues of instability surrounding each resonant curve and it can
be checked that the minimums of the tongues are almost in the line
1 (o)=1+3#̂2 (for simplicity we shall say they are on this line). We use now
these results in Eq. (30) and we see that (#̂, 1 (o), _) become (#� k �|� k , 1k ,
|� k �0) with

#� 2
k

|� 2
k

=
:v3G(v)2

F(v) tanh(v)(1+;v2)
(37)

02

|� 2
k

=:=2 F(v)
v tanh(v)(1+;v2)

(38)

We consider now in the (1, v) plane the resonant curves C(n) (corre-
sponding to 1 (o)= f� n(_)) and the marginal curve C (corresponding to
1 (o)=1+3#̂2). One has
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1=(1+;v2) \n2=2 :
1+;v2

F(v)
v tanh(v)

+
:

1+;v2

v3G(v)2

F(v) tanh(v)
&1+

# fn(v; :, ;, =) (39)

1=1+;v2+2:H(v)# f (v; :, ;), H(v)#
3
2

v3G(v)2

F(v) tanh(v)
(40)

where (39) are the curves C(n) and (40) the curve C. These curves are
shown in Fig. 1 for the values (:=0.133, ;=1.437, ==9.856). The mini-
mum (v*, 1*) of the marginal curve is obtained from the equation f $(v)=0
which gives

;
:

=&
H$(v)

v
#H� (v) (41)

Fig. 1. The marginal curve with its minimum (v*, 1*) and the two first resonant curves.
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Fig. 2. The curve v*(;�:).

Solving this equation in which H� (v) is a function only of v, we obtain
the minimum v*(;�:) in Fig. 1. We have drawn the function v*(;�:) in
Fig. 2. This function decreases monotously and tends to zero as (;�:)&1�4

for big (;�:).
We can determine the values (v(P1), v(P2),...) of Fig. 1 eliminating 1

between (39) and (40). This gives

n2=2=2 _v4G(v)2

F(v)2 +
1+;v2

:
v tanh(v)

F(v) &#M(v; :, ;) (42)

We have drawn this function M(v; :, ;) for (:=0.133, ;=1.437) in
Fig. 3. The value m0 of M(v; :, ;) for v=0 and the leading behavior for
v � � are both independent of (:, ;) and one has m0=25�8 and M(v; :, ;)
r

8
9v4 when v � �. Then when (:, ;) are given we calculate v*(;�:) from

Fig. 2 and using Fig. 3 we determine the important value m(:, ;). We have
to distinguish two cases:

(a) If =2<m(:, ;) we have that vcrv*(;�:)�0.86 and since v*(;�:)
decreases slowly (as (;�:)&1�4) we have that vc=O(1) unless (;�:) is very
big, and then '==�v2

cr= and the CT equation will be a quantitative
approximation if =<<1 and we can expect qualitative agreement when =
becomes O(1). In this case the second parameter +<(1+:min

1 �v2
c)r

(1+?2)&1
r10&1 is always small;
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Fig. 3. The function M(v; :, ;) for :=0.133, ;=1.437.

(b) If =2>m(:, ;) one will have vc=v(P1)>v*(;�:) (this is the
situation drawn in Fig. 3) and one can ask the question of the behavior of
'==�v2

c for big =. The answer is given by Eq. (42) which tells us that
(=�v2

c)2
r8�9 when = � �. We see then that for big = the parameter '�1

and one will also have +<1 (although it can be very near one if vc is big
enough) and consequently we may expect that the CT equation will be
valid at least qualitatively.

We can summarize our analysis plotting ' as a function of = for dif-
ferent values of (:, ;) as it is done in Fig. 4 where we can see that the CT
equation can be a qualitative description for almost all values of = since '
is of O(1), except for a small interval around the point Q$, or much smaller
than one when = is very small. The values of (:, ;) for which the points Q
and Q$ approach each other are the most favorable to have '�O(1) in
almost all the range of variation of =. We gave an explicit relation between
: and ; for this to occur in the frame of the WKB solution of the CT equa-
tion in ref. 5. In conclusion we can have '�1 and +<1 for any = but the
strict condition for validity of the CT equation, i.e., '<<1, is only verified
for = small enough. The parameter '=0�&k2

c ==�v2
c which controls the

validity of the CT equation corresponds to (l�$)2 where $=(&�0)1�2 and l
is the penetration length of the motion defined in refs. 5 and 6 since when
=2<m(:, ;) one has 'r==0h2�& and l=h and when =2>m(:, ;) one has

563Asymptotic Description of a Viscous Fluid Layer



File: 822J 726112 . By:XX . Date:25:10:00 . Time:00:10 LOP8M. V8.B. Page 01:01
Codes: 558 Signs: 112 . Length: 44 pic 2 pts, 186 mm

Fig. 4. The parameter ' as a function of = for (a) (:=2.5, ;=1), (b) (:=10, ;=5),
(c) (:=1000, ;=5).
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vc>v*(;�:)=0.86 and as soon as vc>1 we can estimate lrk&1
c and then

'=(l�$)2.
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